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Abstract To count the number of chemical compositions of a particular mass, we
consider an alphabet A with a mass function which assigns a mass to each letter in
A. We then compute the mass of a word (an ordered sequence of letters) by adding
the masses of the constituent letters. Our main interest is to count the number of
words that have a particular mass, where we ignore the order of the letters within
the word. We show first that counting the number of words of a given mass has
a geometric interpretation, whose solutions are called Ehrhart quasi-polynomials, a
class of functions defined on integers. These special functions are “periodic” in the
sense that they use the same polynomial every λ steps. In addition to discovering the
connection between counting compositions and Ehrhart quasi-polynomials, we also
find number theoretic results that greatly reduce the number of candidates for the
period, λ. Finally, we illustrate the usefulness of these results and the use of a software
library named barvinok (by Verdoolaege et al.) by applying them to eight different
classes of chemical compositions, including organic molecules, peptides, DNA, and
RNA.
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1 Introduction

In this paper we consider an alphabet A with a mass function which assigns a mass to
each letter in A. We compute the mass of a word (an ordered sequence of letters) by
adding the masses of the constituent letters. Our main interest is to count the number
of words that have a particular mass, where we ignore the order of the letters within
the word; “ABC” is considered the same as “CBA” but not the same as “ABCC”. For
results on ordered sequences, see [1–3]. We refer to the class of all words with the same
letter composition as simply a “composition”. Thus, we are interested in knowing how
many compositions have a particular mass.

We show that the problem of counting compositions has a geometric interpretation
involving counting the number of lattice points contained in a d-dimensional simplex,
where d is the number of letters in the alphabet A. If the masses are rational numbers
we are able to use results by Eugene Ehrhart that say that the function that counts
the number of lattice points found within a polytope P dilated by the integer factor t,
LP(t) = #tP ∩ Z

d , is a member of a class of functions now called Ehrhart quasi-
polynomials.

A function Q(t) is an Ehrhart quasi-polynomial if there exists a positive integer λ

and polynomials p0, . . . , pλ−1 such that

Q(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0(t) if t ≡ 0 mod λ

p1(t) if t ≡ 1 mod λ
...

pλ−1(t) if t ≡ λ − 1 mod λ.

These special functions are defined on integers and are “periodic” in the sense that
they use the same polynomial every λ steps.

One way to characterize a quasi-polynomial of degree d and period λ is to list all
(d + 1) × λ coefficients of the underlying polynomials. In this case it is useful to
know the size of λ if we want to store the complete characterization of a particular
quasi-polynomial; if λ is too large then it can be impossible or impractical to store
or use the explicit solution. In Sect. 2 (Theorem 11) we determine lower and upper
bounds on the period of the quasi-polynomial associated with counting compositions.

While we show that the number of compositions for rational masses is an Ehrhart
quasi-polynomial, we also show in Sect. 3 that the current methodologies for calcu-
lating Ehrhart quasi-polynomials are extremely impractical for counting amino acid
compositions of peptides, even when applied to integer masses. Furthermore, we show
that the quasi-polynomial that counts amino acid compositions is so large that it would
be largely useless, projecting that it would require 300 TB and 14 billion calculations
every time it was applied. We should point out, however, that an improvement in the
storage of the quasi-polynomial could make a difference in its usefulness. The soft-
ware library which we use, barvinok [4], had already improved the representation
of the quasi-polynomial through the use of remainder functions, decreasing required
space and time by several orders of magnitude.
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In addition we show empirically that improving accuracy appears to increase com-
plexity in a roughly linear fashion. For example, if we wanted to improve our accuracy
to 0.01 Daltons from 1 Dalton, we would increase the time and space requirements
100-fold.

Finally, we note that computing the general form of the solution involving irrational
masses is a very interesting open problem.

2 Mathematical results

We show that the problem of counting the number of compositions of a given mass
belongs to the class of problems that count lattice points inside a multi-dimensional
solid and, as such, has a solution called an Ehrhart quasi-polynomial. In addition, we
significantly restrict the number of possible periods of the Ehrhart quasi-polynomials
(defined later) that count chemical compositions.

2.1 Chemical compositions and Ehrhart quasi-polynomials

Before we define the mathematical problem of counting compositions, we need to
define a composition and its constituent parts.

First, we define an alphabetA as a finite ordered list of distinct objects {a1, . . . , ad}.
A composition x from alphabet A = {a1, . . . , ad} is an unordered multi-set con-

sisting of zero or more copies of each element in A. More intuitively, we think of a
composition as a collection of letters where we alphabetize the letters (to remove the
order information from the original sequence). Or, even simpler, we can call a com-
position a vector in N

d . We denote the infinite list of compositions of A by Comp(A).
Next we define a mass function, mass : A → R

+. In addition, we extend the
mass function for x ∈ Comp(A), x = (x1, x2, . . . , xd), by defining mass(x) =∑d

i=1 xi mass(ai ). We will use the notation mi = mass(ai ).

We define the weighted alphabet
∼
A as the ordered pair (A, mass()).

We denote the list of compositions of mass M or less, composed of elements of A,

as Comp
(∼
A, M

)
.

The size of set Comp
(∼
A, M

)
is denoted C(M). The function C is called the

cumulative composition counting function for the weighted alphabet
∼
A. In other words,

C(M) = # {x ∈ Comp(A)|mass(x) ≤ M}
= #Comp

(∼
A, M

)
.

The general question we are trying to answer is the following Composition Counting

Problem: Suppose C is the cumulative composition counting function for
∼
A. How can

we compute the function C in terms of mass M?
Now that we have defined the algebraic aspects of our problem, we need to define

its geometric aspects. In this paper the term lattice points refers to the points in a
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multi-dimensional space R
n that have integer coordinates (Zn). Of particular interest

to us is the number of lattice points contained in a polytope P when it is dilated by a
positive integer t , i.e. #

(
tP ∩ Z

d
)
. This number is denoted LP(t) [5].

We say that s is a mass simplex of dimension k if s is a k-dimensional simplex in R
n

that includes the origin, such that every vertex of s is either the origin or on a positive
axis; i.e. other than the origin, each vertex has exactly one non-zero coordinate and
that coordinate is positive. Moreover, we assume that the vertices of s are affinely
independent. Further, we define s ⊂ R

d as a mass simplex for
∼
A (or mass simplex for

masses m1, . . . , md ) if each vertex is either the origin or 1
mi

on coordinate i and zero
otherwise, for 1 ≤ i ≤ d.

Note that the last two definitions are consistent; i.e. a mass simplex for
masses m1, . . . , md is a mass simplex. Also, note that a mass simplex for masses
m1, . . . , md can be expressed as the intersection of d + 1 half-spaces: {x|µ · x ≤ 1} ∩⋂d

i=1 {x|xi ≥ 0}, where µ = (m1, . . . , md). From now on we use d to represent the
total number of elements in our alphabet A = {a1, a2, . . . , ad}.

These definitions allow us to state the following relationship between counting
compositions and counting lattice points:

Lemma 1 (C counts the number of lattice points in the mass simplex) Suppose C is

the cumulative composition counting function over
∼
A and P is the mass simplex for

∼
A. Then C(t) = LP(t) for all positive real numbers t .

Proof Let d be the number of elements in A. Fix a positive real number t and let
x = (x1, x2, . . . , xd) ∈ Z

d represent a particular composition in Comp(A). We claim
that mass(x) ≤ t if and only if x ∈ tP.

Note that mass(x) ≤ t iff
∑d

i=1 mi xi ≤ t . Similarly,
∑d

i=1 mi xi ≤ t iff
∑d

i=1 mi
xi
t ≤ 1. This last inequality is equivalent to x

t ∈ P; i.e. x ∈ tP.
Thus, since x ∈ Z

d , C(t) = #(tP ∩ Z
d) = LP(t). 
�

The problem of counting lattice points in a rational polytope (a polytope with
rational vertices) was approached by Eugene Ehrhart in [6]. His work gave rise to a
class of functions later called Ehrhart quasi-polynomials: A function Q : Z → R

is an Ehrhart quasi-polynomial if there exists a positive integer k and polynomials
p0, . . . , pk−1 such that

Q(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0(t) if t ≡ 0 mod λ

p1(t) if t ≡ 1 mod λ
...

pλ−1(t) if t ≡ λ − 1 mod λ.

The degree of Q is defined as max
0≤ j≤λ−1

deg
(

p j
)
. Note that this is equivalent to say-

ing that there exists an integer d and real numbers a0,0, . . . , a0,d , a1,0, . . . , a1,d , . . . ,

aλ−1,0, . . . , aλ−1,d such that
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Explicit form of Ehrhart quasi-polynomial

Q(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0,d td + · · · + a0,0t0 if t ≡ 0 mod λ

a1,d td + · · · + a1,0t0 if t ≡ 1 mod λ
...

aλ−1,d td + · · · + aλ−1,0t0 if t ≡ λ − 1 mod λ.

(1)

Therefore, we will often write an Ehrhart polynomial as

Q(t) =
d∑

i=0

ai (t)t
i

where ai (t) is a function on t which has period λ.
A key result in the study of counting lattice points within polytopes is:

Theorem 2 (Ehrhart’s theorem for rational polytopes) SupposeP is a rational convex
d-dimensional polytope. Then LP(t) is an Ehrhart quasi-polynomial in integer vari-
able t of degree d. Its period λ divides the least common multiple of the denominators
of the coordinates of the vertices of P.

A proof of this theorem appears in [7].
By combining Lemma 1 (C counts the number of lattice points in the mass simplex)

and Theorem 2 (Ehrhart’s theorem for rational polytopes), we can describe the nature
of solutions to the Composition Counting Problem.

Corollary 3 (C is an Ehrhart quasi-polynomial) Suppose C is the cumulative com-

position counting function over
∼
A and that

∼
A is rational (i.e. all masses are rational

numbers). Then C is an Ehrhart quasi-polynomial.

Proof Let P be the mass simplex for
∼
A. Then by Lemma 1 (C counts the number of

lattice points in the mass simplex), C(t) = LP(t). However, by Theorem 2 (Ehrhart’s
theorem for rational polytopes), LP(t) is an Ehrhart quasi-polynomial. Therefore, so
is C(t). 
�

Note that, because Ehrhart’s theorem addresses only rational polytopes, we must
make the same requirement in the Corollary.

2.2 Calculating periods of Ehrhart quasi-polynomials

While Ehrhart’s theorem gives us the general form of the solution, we still want to
derive the quasi-polynomial for a specific collection of masses. This can be done
by calculating the number of compositions C(M) through other means for a finite
number of values M and then calculating the coefficients in Eq. (1) (Explicit form
of Ehrhart quasi-polynomial) through standard interpolation techniques. However, in
order to use that form of the quasi-polynomial, we must first calculate the period λ of
the quasi-polynomial.
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Several papers address the question of the period of a quasi-polynomial [8–10].
Here, we derive a tighter lower bound for the number of compositions C(M) as well
as provide a number-theoretic restriction based on prime-factoring. In order to obtain
these results we must develop more mathematical machinery.

Given a function f of one variable, we say that b(·, ·) is the λ − M difference
triangle (of order d) for f if b satisfies

b(i, j) =
{

f (M + λ j) for i = 0 and j = 0, . . . , d
b(i − 1, j + 1) − b(i − 1, j) for i = 1, . . . , d and j = 0, . . . , d − i.

The name refers to the fact that one can form a triangle of differences; the first row
consists of f evaluated at specific intervals, the second row consists of adjacent dif-
ferences of the first row, the third row consists of adjacent differences of the second
row, and so on.

Note that if the range of f is the integers then the difference triangle consists of
integers.

The following lemma will be used to restrict the list of possible periods of a quasi-
polynomial.

Lemma 4 (Last term of 1–0 difference triangle) Consider the polynomial f (x) =
a0x0 + · · · + ad xd and let b(·, ·) be the 1–0 difference triangle for f . Then b(d, 0) =
d!ad .

Proof We claim that b(i, x) = d!
(d−i)!ad xd−i + gi (x) where gi (x) is a polynomial of

degree d − i − 1 or less. We will prove this by induction on i .
For i = 0 we have

b(0, x) = f (x)

= ad xd + (ad−1xd−1 + · · · + a0x0).

If we define g0 to be the sum of all the terms of f of degree less than d then we have

b(0, x) = ad xd + g0(x)

= d!
(d − i)!ad xd + gi (x).

Assume now that the induction hypothesis holds for i . We want to show that it holds
for i + 1:

b(i + 1, x) = b(i, x + 1) − b(i, x)

= d!
(d − i)!ad (x + 1)d−i + gi (x + 1) − d!

(d − i)!ad (x)d−i − gi (x)

= d!
(d − i)!ad

(
(x + 1)d−i − (x)d−i

)
+ gi (x + 1) − gi (x)
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= d!
(d − i)!ad

(

(d − i)xd−i−1+
(

d − i
2

)

xd−i−2 + · · · +
(

d − i
d − i

)

x0
)

+gi (x + 1) − gi (x)

= d!
(d − i − 1)!ad xd−i−1 + d!

(d − i)!ad

×
((

d − i
2

)

xd−i−2 + · · · +
(

d − i
d − i

)

x0
)

+gi (x + 1) − gi (x).

Note that everything after the first term is a polynomial of degree d − i −2; we replace
it with gi+1(x) to get

b(i + 1, x) = d!
(d − i − 1)!ad xd−i−1 + gi+1(x)

= d!
(d − (i + 1))!ad xd−(i+1) + gi+1(x),

which is the desired result for i + 1.
Thus, we have shown that b(i, x) = d!

(d−i)!ad xd−i + gi (x). Adding the fact that
gd = 0, we can conclude for i = d and x = 0, that b(d, 0) = d!ad . 
�

Extending the previous lemma, we now calculate the last term in the more general
case of a λ-M difference triangle.

Lemma 5 (Last term of λ-M difference triangle) Consider a polynomial f (x) =
a0x0 + · · · + ad xd . Suppose λ and M are integers, and that b(·, ·) is the λ − M
difference triangle for f . Then b(d, 0) = d!λdad .

Proof Define g(x) = f (M + λx) with g(x) = a′
0x0 + · · · + a′

d xd . Note that b(·, ·)
is the 0-1 difference triangle for g. Then, by Lemma 4 (Last term of 1-0 difference
triangle), b(d, 0) = d!a′

d . We can determine a′
d by comparing the highest order terms

of f and g:

a′
d xd + · · · + a′

0 = g(x)

= f (M + λx)

= ad (M + λx)d + · · · + a0

= adλd xd + · · · .

In other words, a′
d = adλd .

Thus,

b(d, 0) = d!a′
d

= d!λdad .


�
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On a separate line of inquiry, we examine what is already known about the highest
order term of LP(t).

Lemma 6 (Relationship between volume of polytope and the Ehrhart quasi-
polynomial) SupposeP is a rational convex d-dimensional polytope. Assume LP(t) is

an Ehrhart-quasi-polynomial given by LP(t) = ∑d
j=0 a j (t)t j . Then ad(t) = Vol(P).

Proof (A similar version of this result is described in [7], page 72). We consider
computing the volume of P by counting the number of d-cubes that fit inside of it, as
in the computation of a Riemann integral. Each d-cube fills space between the lattice

points
( 1

t Z
)d

, each lattice point being contained in P. Thus,

Vol(P) =
∫

P

dx

= lim
t→∞

1

td
#

(

P ∩
(

1

t
Z

)d
)

= lim
t→∞

1

td
#
(

tP ∩ Z
d
)

= lim
t→∞

1

td

d∑

j=0

a j (t)t
j

= lim
t→∞

ad(t)td

td
.

Since ad(t) is a periodic function and the volume is a fixed number, ad(t) must be a
constant. Therefore, ad(t) = Vol(P). 
�

In order to use the previous lemma we need to know the volume of a mass simplex.

Lemma 7 (Volume of mass simplex) LetP be a mass simplex for positive, real-valued
masses m1, . . . , md. Then V ol(P) = 1

d!∏d
i=1 mi

.

Proof For d = 1, the volume of P is given by

V ol(P) = 1

m1

Now suppose that the induction hypothesis holds for d = k. Note that P is a
k + 1-dimensional cone. Therefore, its volume is given by

V ol(P) = 1

k + 1
(base)(height)

= 1

k + 1

⎛

⎜
⎜
⎜
⎝

1

k!
k∏

i=1
mi

⎞

⎟
⎟
⎟
⎠

(
1

mk+1

)
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= 1

(k + 1)!∏k+1
i=1 mi

= 1

d!∏d
i=1 mi

.


�
Combining the results of the previous two lemmas we have

Lemma 8 (Highest order term of C) Suppose C is the cumulative composition count-

ing function over
∼
A and that

∼
A is rational. Let d be the number of objects in the

alphabet A. Then C is an Ehrhart quasi-polynomial of degree d,
∑d

j=0 a j (t)t j , with

ad(t) = 1
d!∏m j

.

Proof Let P be the mass simplex for
∼
A. Then by Lemma 1 (C counts the number

of lattice points in the mass simplex), we know that C(t) = LP(t). Combining this
fact with Lemma 6 (Relationship between volume of polytope and the Ehrhart quasi-
polynomial) and Lemma 7 (Volume of mass simplex) we have

ad(t) = V ol(P)

= 1

d!∏d
i=1 mi


�
Applying Ehrhart’s theorem in a different way to the case of mass simplexes, we

are able to place an upper limit on the period, as well as put upper limits on the period’s
prime factorization.

Lemma 9 (λ divides least common multiple of masses) Suppose C is the cumulative

composition counting function over
∼
A and that

∼
A is rational. Assume that C is an

Ehrhart quasi-polynomial of degree d and period λ and that the masses of
∼
A are

m1, . . . , md. Then λ divides lcm
i

(num(mi )).1

Proof Let P be the mass simplex for
∼
A. Then the coordinates of the vertices of P

are either zero or 1
m j

for j = 1, . . . , d. Since m1, m2, . . . , md are positive rational

numbers, so are 1
m j

. By Theorem 2 (Ehrhart’s theorem for rational polytopes), LP(t)
is an Ehrhart quasi-polynomial in t of degree d, whose period λ divides the least
common multiple of the denominators of the coordinates of the vertices of P. How-
ever, the denominators of P are the numerators of the masses. Therefore, λ divides
lcm

i
(num(mi )). 
�

For the following two theorems we denote the number of times that p divides m
(i.e., max

n∈N

{n : pn|m}) by n(p, m)

1 lcm
i

(ai ) is the least common multiple of the numbers {ai }.
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We also represent the numerator of the rational number q (where q is in reduced
form) as num(q).

The following theorem greatly restricts the number of possible periods that we
might need to check in practice. In particular, it puts bounds on the number of times
a prime may be found in the factorization of the period λ.

Theorem 10 (Bounds on divisors of λ) Suppose C is the cumulative composition

counting function over
∼
A. Suppose also that C is an Ehrhart quasi-polynomial of

period λ. Let d be the number of elements in A and let p be any prime number. Then

⌈
n
(

p, num
(∏

m j
))

d

⌉

≤ n(p, λ) ≤ max
j

{
n
(

p, num
(
m j

))}
.

Proof We will handle the two inequalities separately.
Lower bound. Since C is an Ehrhart quasi-polynomial, write C(t) = ∑d

i=0 ai (t)t i .
By the definition of λ we know that

∑d
j=0 a j (k + λx)t j = ∑d

j=0 a j (k)t j for integers
k and x . This allows us to decompose C into λ polynomials:

C(t) =

⎧
⎪⎨

⎪⎩

f0(t) t ≡ 0 mod λ
...

fλ−1(t) t ≡ λ − 1 mod λ

where fk(t) = ∑d
j=0 a j (k)t j for k = 0, . . . , λ − 1. For each k = 0, . . . , λ − 1 let

bk(·, ·) be the λ − k difference triangle of fk . Then, by Lemma 5 (Last term of λ − M
difference triangle), bk(d, 0) = d!λdad . (Note that the right-side is independent of k).
Furthermore, by Lemma 8 (Highest order term of C), ad = 1

d!∏m j
. Thus,

bk(d, 0) = d!λdad

= λd
∏

m j

Note that bk(d, 0) is an integer. So, if p divides num
(∏

m j
)

a total of
n
(

p, num
(∏

m j
))

times, it must divide λd at least as many times. Thus,
n(p, num (

∏
m j))

d ≤ n(p, λ). Since the right-hand side is an integer, we may round

the left-hand side up, yielding:
⌈

n(p, num (
∏

m j))
d

⌉
≤ n(p, λ).

Upper bound. By definition, pn(p,λ)|λ. However, Lemma 9 (λ divides least com-
mon multiple of masses) tells us that λ| lcm

j

{
num

(
m j

)}
. Therefore, pn(p,λ)| lcm

j{
num

(
m j

)}
. Therefore, n(p, λ) ≤ max

j

{
n(p, num

(
m j

)
)
}
. 
�

Finally, we summarize the previous work into one theorem by stating that the
cumulative composition function C is an Ehrhart quasi-polynomial whose period we
can restrict to a small number of possibilities.
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Theorem 11 (C is an Ehrhart quasi-polynomial with bounded period) Suppose C is

the cumulative composition counting function over the weighted alphabet
∼
A with d

(positive) rational masses. Then the restriction C : Z
+ → R is a quasi-polynomial of

degree d and period λ such that
∏{

prime p
divides
num

(∏
m j

)}

p divides λ. Furthermore, λ divides

lcm
i

{num (mi )}.

Proof Suppose that prime p divides num
(∏

m j
)
. Then by Theorem 10 (Bounds on

divisors of λ),

n(p, λ) ≥
⌈

n
(

p, num
(∏

m j
))

d

⌉

≥
⌈

1

d

⌉

= 1.

In other words, p|λ. Since this is true for every prime p that divides num
(∏

m j
)
,∏{

prime p
divides num

(∏
m j

)}
p divides λ, which was the first conclusion.

The second claim follows from Corollary 3 (C is an Ehrhart quasi-polynomial) and
Lemma 9 (λ divides least common multiple of masses). 
�

Note that an Ehrhart quasi-polynomial of period 1 is a polynomial, referred to as an
Ehrhart polynomial. In practice, however, the period of the Ehrhart quasi-polynomial
for mass simplexes is rarely 1, as demonstrated by the following proposition and
corollary.

Proposition 12 (Conditions for C being a polynomial on integers) Suppose C is the

cumulative composition counting function over
∼
A, which has rational masses. If C is

a polynomial on Z
+ then num

(∏
m j

) = 1. In addition, a partial converse is true: if
the numerator of each mass is 1 then C is a polynomial.

Proof C is a polynomial on Z if and only if its period λ is 1. Note also that λ is 1
if and only if no prime divides λ. However, by Theorem 11 (C is an Ehrhart quasi-
polynomial with bounded period),

∏{
prime p

divides
num

(∏
m j

)}

p divides λ. Therefore, since no

prime divides λ then no prime divides num
(∏

m j
)
. Thus, num

(∏
m j

) = 1.
For the second conclusion, note that if all the masses have a numerator of 1 then

lcm
j

{
num

(
m j

)} = 1. This tells us, again by Theorem 11 (C is an Ehrhart quasi-

polynomial with bounded period), that λ must be 1. In other words, C is a polynomial.

�
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Corollary 13 (C is not usually a polynomial on integers) Suppose C is the cumulative

composition counting function over
∼
A with integer masses. Then C is a polynomial if

and only if m1 = m2 = · · · = md = 1.

Proof If C is a polynomial then, by Proposition 12 (Conditions for C being a poly-
nomial on integers), num

(∏
m j

) = 1. Because the masses are integers,

∏
m j = num

(∏
m j

)

= 1.

However, since the masses are integers, they must all be one.
Now suppose m1 = m2 = · · · = md = 1. Then the numerator of each mass is one.

Therefore, again by Proposition 12 (Conditions for C being a polynomial on integers),
C is a polynomial. 
�

In other words, if we assume that we are using integer masses, C is a polynomial if
and only if the integer masses are all 1. The assumption that the masses are integers is
critical to this corollary, however. For example, if we have two masses, m1 = 1

2 and
m2 = 2, then

C(M) = 1

2
M2 + 3

2
M + 1

which is a polynomial.
Interestingly, the Ehrhart quasi-polynomial for the two mass system of 1

3 and 3 has
a period of 3 on the integers, which is a counter-example of the contra-positive in
the first part of Proposition 12 (Conditions for C being a polynomial on integers). It
also illustrates that the product of the masses being 1 is not sufficient for C to be a
polynomial.

3 Computational results

Theorem 11 (C is an Ehrhart quasi-polynomial with bounded period) describes the
structure of the composition counting function. In particular, it describes a type of
period and gives bounds for that period. Before we attempt to calculate this formula,
however, we should check to see that the solution will be useful. By computing the
lower bound of the period for a particular Ehrhart quasi-polynomial, we can state
whether it is feasible to describe it using the form of Eq. (1) (Explicit form of Ehrhart
quasi-polynomial).

In this section we illustrate the use of the mathematical tools we have developed
by applying them to several chemical families. These families are described in the
Appendix A: Chemical families.
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Table 1 Advantage of Theorem 10 (Bounds on divisors of λ)

Object type Possible period Number of candidates Factors of minimum period

Minimum Maximum Total Reduced

Hydrocarbons 84 84 12 1 1

Paired DNA 381,306 381,306 16 1 1 (Relatively prime)

RNA 82,110 246,330 384 2 1, 3

DNA 4,522 614,992 240 8 1, 2, 4, 8,

17, 34, 68, 136

(Relatively prime)

Elemental 168 672 24 3 1, 2, 4

Organic 840 3,360 48 3 1, 2, 4

PEC 43,260 173,040 80 3 1, 2, 4

Amino acid 7.4 × 1025 9.9 × 1028 4,718,592 28 20−6 × 30−1 × 70−1

By using Theorem 10 the number of candidate periods is often reduced to a manageable number, as shown
in the columns labeled “Number of Candidates”. “Total” refers to how many numbers divide the least
common multiple of the masses. “Reduced” refers to the number of possible periodicities that are available
after we apply the lower bound from Theorem 10. The range of periodicities is given by the columns under
“Possible Period”, while “Factors of Minimum Period” describe the candidate periodicities as a multiple of
the minimum possible. For example, the values 1, 2, and 4 in the “Elemental” row describe the fact that the
candidate periodicities are 168×1, 168×2, and 168×4 (168, 336, and 672). There are 28 possibilities for
amino acids so we describe the candidates in terms of the prime factors. This also shows how to calculate
the number of candidates: there are 7 factors of 2 to consider, 2 factors of 3, and 2 factors of 7, for a total
of 7 × 2 × 2 = 28 possibilities.

3.1 Periodicities

We start our application of the mathematical results by calculating the period for the
various collections of chemical structures.

Lemma 9 (λ divides least common multiple of masses) puts an upper limit on
the number of possible periods. In particular, if we assume that we are using integer
masses then the period λ divides lcm

i=1,...,d
{mi }, as represented by the Maximum column

in Table 1.
In addition, Theorem 11 (C is an Ehrhart quasi-polynomial with bounded period)

gives lower bounds on the number of compositions (see Table 1, the column called
“Minimum possible period”). We can improve our bounds yet further by applying
Theorem 10 (Bounds on divisors of λ) (from which Theorem 11 is derived)—see
Table 1, column labeled “Reduced”.

Even for amino acids we have reduced the number of possible periods for the Ehrhart
quasi-polynomial from over 4 million possibilities to a mere 28. More importantly,
we have also shown that the period is at least 7.4 × 1025. In other words, if we store
all of the coefficients of the quasi-polynomial we will need at least

(#terms in a polynomial) × (# polynomials) = 21 × 7.4 × 1025 terms

= 1.4 × 1027 terms.
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The scale of this number is such that it is safe to say that we cannot expect to compute
these polynomials in this way or store them as distinct polynomials.

3.2 Quasi-polynomial interpolation

One method of deriving C is to compute the actual number of compositions in order
to derive a collection of terms and then compute the constituent polynomials by inter-
polation of the data. Suppose that C is an Ehrhart quasi-polynomial of known degree
d and known period λ. Suppose also that we can calculate C(M) for integer values of
M such that 0 ≤ M < (d + 1)λ. Since we are given (d + 1) terms for each of C’s
constituent polynomials, which are of degree d, we have enough terms to uniquely
identify C(M).

In other words, for this technique to be practical we first need the period of the
polynomial (as discussed previously) and next we need to compute (d + 1)λ terms
using the recurrence relationship. Before we start, however, we can check to see if this
technique is feasible by calculating the minimum number of required terms ((d +1)λ).

We can also work in the opposite direction to determine the period: by attempting
to determine the coefficients, we check to see if the coefficients do indeed repeat with
the period which we are checking.

In order to eliminate additional period candidates we used an Excel spreadsheet,
difference triangles, and the fact that we know the highest order term from Lemma 8
(Highest order term of C). While round-off error clearly starts to affect some of our
calculations, Table 2 shows that we are able to identify the period for half of the
chemical families. We also conjecture that if the masses are pairwise relatively prime
then the period must be the maximum possible—this explains the question mark on
our “answer” in the DNA row.

In addition to excluding invalid periods, the spreadsheet we created for this purpose
calculated the quasi-polynomial when possible (Table 3). Due to the size of the masses
in the Paired DNA and DNA problems, we were only able to compute the period by
excluding the other possibilities. However, we were able to derive quasi-polynomial
coefficients only for Hydrocarbon, Elemental, and Organic chemical families. Their
descriptions are too long to include here. With enough computational resources we
should be able to compute all of the rest except for the Amino Acid Composition
chemical family. We should also note that in every case we could verify, the largest
possible period was the actual period.

Was the polynomial worth finding (computationally speaking)? In other words, is
it easier to simply store the answers we computed by explicitly counting compositions
instead of the quasi-polynomial? The answer, is often “no”. For example, for peptide
masses less than 10,000 Daltons it is more efficient to store every possible exact answer
than it is to store the Ehrhart quasi-polynomial in the form of a list of polynomials.

3.3 Empirical computational complexity

However, even when the period is too large to make such a solution practical it can still
be possible to describe it using some other form. For example, suppose that one of the
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Table 2 Calculation of Ehrhart quasi-polynomial periods

Object type Possible period Items to test Tested Answer Comments

Minimum Maximum

Hydrocarbons 84 84 None None 84 –

Paired DNA 381,306 381,306 None None 381,306 –

RNA 82,110 246,330 1 None ? Our numerical experiments
did not allow more than
60,000 calculations; this
one test requires over
300,000 – feasible but not
practical. This one test
would be enough to identify
period, though

DNA 4,522 614,992 7 3 614,992? Masses are relatively prime,
which may mean maximum
period

Elemental 168 672 2 2 672 168 and 336 give the wrong
answers for the last term of
the difference pyramid

Organic 840 3,360 2 2 3,360 1,680 gives the right answer
most of the time

PEC 43,260 173,040 2 None ? Impractical

Amino acid 7.4 × 1025 9.9 × 1028 27 None ? Beyond
computational
feasibility

We determine the period for as many chemical families as possible. Using the candidate values from Table 1
and an Excel spreadsheet designed to compute quasi-polynomials given masses and period, we eliminated
candidate periodicities by comparing the derived top order term with that expected from Lemma 8 (Highest
order term of C). “Items to test” lists the number of candidate periods that we would need to test to identify
the period. “Tested” refers to how many periods we were able to test (eliminate) empirically. “Answer” is
the actual period, if known. The phrase “Impractical” (in the last column) means that it takes more than
30,000 calculations to test the hypothesis; this was the limit of the Excel spreadsheet used to make these
calculations.

coefficients is a cosine function with period 10100. While the form of Eq. 1 would be
prohibitively large, we could simply write the polynomial, replacing the periodic term
with a cosine function. In other words, there may be a more concise way to represent
the quasi-polynomial.

Verdoolaege et al. [11] usedsuch a representation for the solutions to lattice point
problems: assuming that {·} is the fractional function (i.e. {x} = (x mod 1)), then
there exist integers gi , hi , ai, j , bi, j , ci, j , ei, j , ni, j such that C is given by

C(M) =
d∑

i=0

gi

hi
Mi

ei∏

j=0

{
ai, j M + ci, j

bi, j

}ni, j

Verdoolaege et al. also created a software library, called “barvinok”, that can
find the quasi-polynomial, LP(t), in polynomial time of the input (assuming a fixed
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Table 3 Determination of Ehrhart Quasi-polynomial solution by interpolation

Object type Period × dimension Solvable? More
practical
than approx?

Number of exact
masses <10,000
Da

More practical
than exact
answer?

Min Max

Hydrocarbons 168 Yes Yes 298,453 Yes

Paired DNA 762,612 Hard No 153 No

RNA 246,330 738,990 Hard No 50,397 No

DNA 3.2 million Hard No 58,446 No

Elemental 3,360 Yes Yes 1 × 1013 Yes

Organic 16,800 Yes No 7 × 1011 Yes

PEC 259,560 1,038,240 Hard No 2 × 1011 Yes

Amino acid 1.6 × 1027 2.1 × 1030 No No 2 × 1011 No

The storage requirements for the simplistic form of the Ehrhart quasi-polynomial is its period times its
dimension +1. If this has few enough terms then we can calculate the coefficients by using the recurrence
relation and solving the resulting linear equations. “Solvable?” refers to the question of whether these linear
equations can be solved and, thus, we can determine the quasi-polynomial. “Hard” refers to the cases where
there are more than 30,000 terms. “More Practical than approx?” compares the usefulness of the Ehrhart
quasi-polynomial to using the recursive formula to integer masses. “Number of Exact Masses < 10, 000 Da”
provides a count of the number of chemical compositions of this family with masses less than 10,000 Da,
as computed by the recurrence relation. “More Practical than exact answer?” compares the usefulness of
the Ehrhart quasi-polynomial to using the recursive formula on exact masses (using elemental composition
as an exact integer vector).

Table 4 Complexity of computing quasi-polynomials

Input Output

Object type Dimensions File size
(bytes)

File size
(bytes)

Elapsed
time (s)

Number of
fractionals

Number of
terms

Hydrocarbons 2 141 329 0.00 3 11

Paired DNA 2 143 225 0.00 2 7

RNA 4 193 26,552 0.12 33 603

DNA 4 193 36,843 0.19 46 873

Elemental 5 219 5,764 0.09 9 170

Organic 5 225 20,657 0.13 17 511

PEC 5 226 45,357 0.41 30 2022

This table shows the input complexity (number of masses and file size) and output complexity (output file
size, elapsed time to completion, number of fractionals, and number of terms).

dimension d). Note that fixing the dimension is essential to this proof. In fact, they
also show that the solution can be exponential in d.

We applied this program to our collection of problems to see if the more compact
form of Ehrhart quasi-polynomials could solve the problems that were too complex
to list otherwise. Indeed, this was the case for all except amino acids (see Table 4).
The relatively small number of chemical species forming the basis allowed all of these
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Table 5 Complexity of computing quasi-polynomials—amino acids

Input Output

# Amino acids File size
(bytes)

File size
(bytes)

Elapsed
time (s)

Number of
fractionals

Number of
terms

1 120 84 0.00 1 3

2 139 402 0.00 4 13

3 162 5,137 0.01 17 136

4 189 35,009 0.18 49 892

5 220 172,239 1.25 82 4,059

6 256 580,272 6.51 122 11,914

7 297 2,779,734 29.8

8 341 7,095,919 116

9 390 13,369,407 325

10 442 43,376,230 1,550

11 498 130,837,897 6,120

12 558 334,610,768 26,280

13 622 511,761,390 94,320

14 690 1,102,543,683 348,000

15 762 3,557,762,180 1,760,000

16 838

17 918

18 1,002

19 1,090

20 1,182

Here we describe the complexity of using one or more amino acid masses when computing Ehrhart quasi-
polynomials using the software library barvinok. This table has the same specifications as Table 4. The
missing values in the output file size reflect our inability to run the experiment due resource requirements -
the quasi-polynomial for 15 amino acids took 20 days to derive on a Sun Workstation and we expected the
next to take two months. Missing data in the number of fractionals and number of terms were due to the
difficulty of parsing the output files into a database—the current parser ran out of memory when processing
7 amino acids.

items (together) to be calculated in under a second on an iMac (3.06 GHz Intel Core
2 Duo, 4 GB RAM).

Unfortunately, the same could not be said for the amino acid problem (Table 5);
we were unable to compute the Ehrhart quasi-polynomial for 20 amino acids. Indeed,
it took 20 days elapsed time to derive the Ehrhart quasi-polynomial for 15 amino
acids. Nonetheless, we can project the resources it would take to compute the Ehrhart
quasi-polynomial for all 20 amino acids.

In Fig. 1 we see a strong exponential relationship between the number of masses
(amino acids) and the time it took to derive the corresponding Ehrhart quasi-
polynomial. If we use the resulting formula to project out to 20 amino acids, we expect
that it would take approximately 40 years to compute the Ehrhart quasi-polynomial
for 20 amino acids.
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Fig. 1 Time to compute quasi-polynomial—barvinok. The equation at the top of the figure describes
the exponential regression model for amino acid calculations (for 6–15 amino acids). We do not have data
beyond 15 amino acids due to computational resource limitations (time and hard drive space). Using less
than 6 amino acids in the regression degraded its performance. We suspect that the program required the
use of virtual memory beyond 6 amino acids, degrading its performance

Table 6 Expected resources for the Ehrhart quasi-polynomial representing amino acid compositions

Statistic Method Calculation Estimate at 20
amino acids

Run time AA -> Runtime 2 × 10−8 × 3.94AA (days) 40 years

File size of output AA ->Filesize 0.0059 × 2.422AA(MB) 286 TB

Number of terms AA ->Filesize 0.0466
(

0.0059 × 2.422AA
)0.9386

2.6 million

-> #terms

Number of fractionals AA -> #fractionals 0.8214 × AA2.8123 3,744

Number of AA ->Filesize 49282
(

0.0059 × 2.422AA
)

+ 57.444 14 billion

computations -> #computations = 290 × 2.422AA + 57.444

Note that this table assumes that we are using integer masses for the amino acids

By modeling the data observed in Table 5 we were able to estimate resource use
for solving the amino acid problem. We summarize our projections to 20 amino acids
in Fig. 3. This table also shows the modeling equations. The conclusion is that, while
it would be feasible to calculate this Ehrhart quasi-polynomial, given a very long
time and what would be considered an astronomical amount of resources at present,
its utility would be extremely limited: with 2.6 million terms, it would be better to
explicitly count the number of compositions and store all of the values of interest
(Table 6).
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Fig. 2 Increased complexity of higher accuracy—barvinok. We compare the different levels of accuracy
for four different experiments, measuring the effects of increased accuracy on time to completion (top) and
output file size (bottom). “Peptigenic w/ backbone” is similar to PEC except that we add another object
(the backbone of the peptide) that is common to every amino acid residue. This also means that the sulfur-
containing object must be altered so that it does not include the backbone. “Large peptigenic” is the same
as PEC

3.4 Effects of accuracy

So far, we have only applied barvinok to integer masses. Ideally, however, we
would like to use it for high accuracy calculations. Therefore, we need to determine
how complexity changes when we change mass accuracy.

We analyzed accuracy performance on three of the chemical families and one
derived from the others (see Fig. 2). They appear to have similar behavior across the
five scales that we measured (1, 0.1 , 0.01, 0.001, and 0.0001 Da) but we cannot draw
any quantitative conclusions from this data.

Figure 3, on the other hand, suggests that, at least for the PEC data, accuracy is
inversely related to both time to completion and file size. In other words, if we want
accuracy to move from 1 to 0.01 Daltons, it will take 100 times longer and use 100
times more space. This matches our intuition regarding the effects of adding accuracy
requirements.

4 Discussion

We have presented theoretical and empirical methods forsolving the composition prob-
lem, i.e., the problem of calculating the number of chemical compositions with a spe-
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Fig. 3 Quantitative analysis of accuracy complexity—barvinok. Analysis was performed on the PEC
data. While a power law matched the data better (solid line), a linear relationship also modeled the data
well (dotted line)

cific mass. We introduced the relationship between counting compositions and Ehrhart
quasi-polynomials, a relationship which derives from a geometric interpretation of the
composition problem. In addition we provide strong restrictions on the period of the
corresponding Ehrhart quasi-polynomial, greatly reducing the number of periods that
need to be tested for this class of problems. We also applied two different methods
to compute Ehrhart quasi-polynomials for seven biologically relevant chemical fam-
ilies (e.g. RNA, DNA, hydrocarbons, organic molecules) and showed, theoretically
and empirically, that neither of these approaches are practical or even desirable for an
eighth chemical family, theoretical peptides (amino acid compositions).

In addition, period information is provided by both Zaslavsky’s Theorem [10,12],
describing the period of the convolution of two quasi-polynomials, and McMullen’s
Theorem [13], describing the period of the individual quasi-polynomial coefficients.
There is even a polynomial time algorithm for calculating the period. However, apart
from providing methods for calculating period (which can be difficult), none of these
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theorems provide a simple lower limit to the period [9]. As we described in Sect. 2,
Theorem 10 (Bounds on divisors of λ) provides a simple lower bound on period, albeit
on a restricted subset of polytopes, mass simplexes. This theorem also restricts the
number of candidate periods, greatly simplifying the process of checking individual
periods. We also conjecture that this result can be extended to all simplexes and, thus,
to all polytopes. It is interesting to note that the lower limit that we provide will often
be the same as the upper limit; others have noted that the upper limit is often the actual
period [8].

We tested the utility of our new bounds on the period by applying them to eight
biologically relevant chemical composition problems. In every case the lower bound
provided important information about the problem, either solving it explicitly or mak-
ing it easy to prove that finding the solution was not feasible and not practical even if
found. In particular, the space required to store the formula for the number of amino
acid compositions of integer mass was much larger than the amount of storage needed
to store the specific counts for each unit of mass up to the size of the largest protein
encountered in nature. Thus, even when identifying the quasi-polynomial was not
practical, the ability to restrict the candidate list of periods was useful.

There have been important efforts on understanding the computational complex-
ity of finding the Ehrhart quasi-polynomial specified by the number of lattice points
in a polytope. While Barvinok showed that the problem is equivalent to the Knap-
sack Problem (which is NP-complete), he also was able to describe a polynomial
time algorithm if one restricts the polytope in question to a simplex of fixed dimen-
sion [14]. Verdoolaege et al. extended this result to any polytope of fixed dimension,
combined it with several other theoretical results [5,15] and implemented the algo-
rithm,calling the software library barvinok [11]. They also mention that, from a
practical point of view, problems with more than six dimensions are often difficult
to solve, which matches our experiences as well; barvinok performed well on
all of our chemical problems except the amino acid composition problem, which is
20-dimensional.

Much of our analysis assumes that we are dealing with integer masses. The field
of mass spectrometry, however, rarely uses integer masses anymore and it is well
understood that high mass accuracy is required (though not sufficient) to properly
identify an amino acid composition [16,17]. We investigated the use of barvinok
on problems with different mass accuracies. As expected, as accuracy increased, so
did the size of the solution; barvinok uses exact solutions (computing with frac-
tions with an arbitrary number of digits). For elemental compositions (five or six
elements), it appears that the formula for 10−5 Dalton mass accuracy is practical,
although large.

Thus we have shown that the actual formula for the number of elemental composi-
tions of a given mass could be computed (provided the number of elements is small).
Such an algorithm may be of value to some identification scoring algorithms [18]. In
addition, while we have used a mass simplex throughout this paper, some ad hoc rules
(see [16]) could be defined in terms of a different polytope.

Acknowledgments We would like to thank Josh Coon for useful discussions and comments and Sven
Verdoolaege for technical assistance with the barvinok software library.
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Appendix A: Chemical families

In this appendix we describe the chemical families that are used in in this paper. First
we describe why we may want to explore the mass distribution of the family and then
describe it in detail, along with any assumptions that had to be made to define the
family.

A.1 Hydrocarbons

The simplest infinite family of compositions is that of hydrocarbons - molecules made
up of hydrogen and carbon. Mass spectrometry of hydrocarbons is a major area of oil
research.

Object name Chemical composition Mass
Carbon C 12
Hydrogen surrogate CH2 14.01565006

Note that there is no non-radical hydrocarbon made of an odd number of hydrogen
atoms, a fact that is a special case of one of Senior’s Rules [19–21]. Also, for this
family we expect at least one C for each pair of hydrogens after the first pair. Thus, we
can use CH2 as a surrogate for H. This means that we can represent all hydrocarbons
as H2(CH2)aCb, although this is not standard notation.

The integer mass solution to this is fairly simple since we need only look at the least
common multiple of 12 and 14 to evaluate combinations involving both the hydrogen
surrogate and carbon.

A.2 Double-stranded DNA

Similar to Hydrocarbons, this is a simple collection of two compositional components,
a DNA strand with its complement. Interestingly, the two components differ by only
one Dalton, arrived by replacing CH with N. This is a nice illustration of one of Senior’s
rules—an even mass number corresponds to an even number of nitrogen atoms (at least
for organic molecules composed of C, H, N, O, or S).

Mathematically this is a very interesting case because the difference between this is
so small relative to their total mass. We can represent their masses as m and m+�m. If
we select the units so that m is 1 then �m is 0.001612774, which gives us an interesting
distribution on the accurate masses. In particular, we must have 620 base-pairs before
we have an overlap of distributions (i.e., the distribution of masses of 620 base-pairs
overlaps that of 621 base-pairs).

Object name Chemical composition Mass
A=T C20H25N7O12 P2 617.10364
G=C C19H24N8O12 P2 618.09889

A.3 RNA

RNA and DNA have several interesting properties. In particular, there are only four of
the building blocks and they are linearly independent (mass uniquely identifies which
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components are present). They also have a remarkably small mass defect, meaning
that they are very close to an integer value, about 1/10th that of proteins, per mass.

Object name Chemical composition Mass
A C10H12N5O6P 329.05252
C C9H12N3O7P 305.04128
G C10H12N5O7P 345.04743
U C9H11N2O8P 306.02530

A.4 DNA

Object name Chemical composition Mass
A C10H12N5O5P 313.05761
C C9H12N3O6P 289.04637
G C10H12N5O6P 329.05252
T C10H13N2O7P 304.04603

A.5 Elemental

We may want to use a collection of elements (say, C, H, N, O, and S), considering all
possible compositions.

Object name Chemical composition Mass
Carbon C 12
Hydrogen H 1.0078250321
Nitrogen N 14.0030740048
Oxygen O 15.99491461956
Sulfur S 31.972071001

A.6 Organic

The Elemental chemical family is actually quite primitive, in the sense that it includes
many impossible compositions. For example, H3 is included but it is not possible.

On the other hand, we can combine certain parts to ensure that the resulting molecule
is reasonable. For example, Senior’s Rules applies to the above list of elements: the sum
of nitrogens and hydrogens must be even. This implies that every N is accompanied
by an H and, when there are insufficient nitrogen atoms to cover the hydrogens, the
remainder must be lumped by twos with a C.

(These rules satisfy many of the “Seven Golden Rules of Mass Spectrometry”, as
given in [20].)

Object name Chemical composition Mass
Carbon C 12
Hydrogen part CH2 14.01565006
Nitrogen part NH 15.010899
Oxygen O 15.99491461956
Sulfur S 31.972071001
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A.7 Peptigenic elemental composition (PEC)

The designation of “peptigenic elemental composition” refers to elemental composi-
tions (i.e. the counts of particular atoms within a molecule) that can be generated from
amino acid compositions. Similar to the Organic chemical family, we group elements
into components that are commonly found in an amino acid and, thus, in a peptide or
protein. Note that, while we call this peptigenic, there are many combinations of these
objects which do not correspond to molecules formed of amino acids. For example,
every non-sulfuric amino acid includes one each of Carbon, Hydrogen Part, Nitrogen
Part, and Oxygen part (elemental composition ONC3H5). This composition of parts
is the peptide backbone.

In spite of this caveat, the number of compositions using these units approximates
the number of peptigenic elemental compositions well for larger masses.

Object name Chemical composition Mass
Carbon C 12
Hydrogen part CH2 14.01565006
Nitrogen part NH 15.010899
Oxygen O 15.99491461956
Sulfur part (Cysteine) SONC3H5 103.0091848

A.8 Amino acid composition (AAC)

In mass spectrometry it can be useful to know how many amino acid compositions are
in a particular mass range.These represent amino acid residues in a protein; i.e. these
are the contributions of any particular amino acid to a protein.

Note also that this is the only chemical family represented in this paper whose
components are not linearly independent. For example, two Glycines have the same
chemical composition as one Asparagine (these are isomers).

Object name Chemical composition Mass
Glycine C2H3ON 57.021464
Alanine C3H5ON 71.037114
Serine C3H5O2N 87.032028
Proline C5H7ON 97.052764
Valine C5H9ON 99.068414
Threonine C4H7O2N 101.047678
Cysteine C3H5ONS 103.009185
Iso-leucine C6H11ON 113.084064
Leucine C6H11ON 113.084064
Asparagine C4H6O2N2 114.042928
Aspartic acid C4H5O3N 115.026943
Glutamine C5H8O2N2 128.058578
Lysine C6H12ON2 128.094963
Glutamic acid C5H7O3N 129.042593
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Object name Chemical composition Mass
Methionine C5H9ONS 131.040485
Histidine C6H7ON3 137.058912
Phenylalanine C9H9ON 147.068414
Arginine C6H12ON4 156.101111
Tyrosine C9H9O2N 163.063329
Tryptophan C11H10ON2 186.079313
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